If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15.53=x^2
We move all terms to the left:
15.53-(x^2)=0
We add all the numbers together, and all the variables
-1x^2+15.53=0
a = -1; b = 0; c = +15.53;
Δ = b2-4ac
Δ = 02-4·(-1)·15.53
Δ = 62.12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{62.12}}{2*-1}=\frac{0-\sqrt{62.12}}{-2} =-\frac{\sqrt{}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{62.12}}{2*-1}=\frac{0+\sqrt{62.12}}{-2} =\frac{\sqrt{}}{-2} $
| (x+3)^(2)=576 | | 12x+1-5x-5x=7 | | 5x+25=91 | | 12x+2-5x-5x=7 | | 7-4(x-5)=67 | | 12x+1-5x=7 | | (x^2+11)^2=0 | | 5x-75=3x+15 | | 5x-75=3x+75 | | (x^2+11)^2=44x | | 8×^3-20x^2-72x=0 | | 5y=2=B | | 2.9=9.6-0.8x | | 5x+8=9x+20 | | -69555594-v=6 | | x(x+2)=19,25 | | 2x^2+77x=0 | | 40=e | | 2x^2+140x=0 | | 1/10-7a=-11 | | 7n^2=488 | | x^2+x^2+4x+x=0 | | 2×=1-7x | | Y=0.25x+45= | | 1296/x^2=0 | | X=7y=49 | | 2x(x+1)=7(x) | | +4-2y=-28 | | n^2–7n=0 | | n2–7n=0 | | F(-8)=-6x+4 | | 4c+35=8c-55 |